JTRS Input/Output API Service Definition

V10
December 15, 2000

Prepared for the
Joint Tactical Radio System (JTRS) Joint Program Office

Prepared by the
Modular Software-programmable Radio Consortium
Under Contract No. DAAB15-00-3-0001

Revision Summary

JTRS Input / Output API
rev 1.0

1.0

Initial release

JTRS Input / Output API

rev 1.0

Table Of Contents
1 INTRODUCTION. ..ottt et e et te e besressesseese e s e nsessesaessesneenennneneas 1
1.1 OVERVIEW . ottiitiitieiieie et st sttt s et b bbbt e e et et et e s bt bt eb e e st et et et e st e b e nbeebenne e e enes 1
1.2 SERVICE LAYER DESCRIPTION. ...ccuteuietestestesteasessessesseeseesssssessessessessessessssssessessessessessessessennes 2
1.3 MODES OF SERVICE.....ueittitistesteaseeseeseessessessessessesseasessssssesssssessessessessessssssessessessessessessessesssnnes 2
1.4 SERVICE STATES. ..cutttiitestestesiestessesseetessestesaessessessessesssesssssessesaessessessesnsensensessessessessessessennes 2
1.5 REFERENCED DOCUMENTS....ccttittitirteeiestestessessessessesseeseessessessessessessessessssssessessessessessessessennes 3
22 U 1 | 5 3
3 SERVICES. ...ttt bbbttt bbb et enes 4
3.1 NON-REAL-TIME SERVICES. ...cceeteitertestestestessesseseseessesssssessessessessessesssssssssessessessessessessessenns 4
3 L1 /O CONFIGQUIBLTON. ..ottt st s s r et ebe b ene e e 6
3.1.2 1/O CONIOl SEIVICES.ceitieieieeesieeieseesteeesee st see e te e tesseesseeaesseesseeeesreesseeneeannensens 6
3.1.3 Audible Alertsand AlarmS SENVICE.........ccvieeiieie e re e nreas 7
.14 1/O SIGNAIS SEIVICE.eeieieieeee ettt st b et nb et sne e sae e e 10
3.2 REAL TIME SERVICES. ...ciutittitteteeeetestessessessessesseesesssessessessessessessessessssssessessessessessessessesennes 12
N R = 0 (= VST 12
3.2.2 [OEIMOrSIgNal SEIVICE.cccueeiiectie ettt ete ettt et e b s e st e e re e s ne e reeenre e 15
4 SERVICE PRIMITIVES. ...ttt sttt enes 16
4.1 NON-REAL-TIME PRIMITIVES......cctttetetertestesiestesseseseessessessestessessessesssessesssssessessessessessens 16
s I R VL@ T @0 1o U = 1 o o P 16
I N VL@ @0 g L1 (0 S 4 o =SSP 21
4.1.3 Audible Alertsand Alarms SEIVICE.........cccueieeiereere e see e eree e see e ee e sre e ens 34
A L@ IS T 7= PSS 42
4.2 REAL-TIMEPRIMITIVES. ..ccttittittsteesieseeeestessestessessessessesssessesssssessessessessesssensessessessessessessensenns 43
A.2.1 QUEUE SEIVICES.eiiueeseeeeieteesteetesseesseeseesseesseessesseesseassessesssessesssessseasesssenssessesssesnsenns 43
4.2.2 Packet SIgNalS SEIVICES.cccciuieieieesieeie st ste e st e st e e e sse e e s reetesneesreenne e 48
4.2.3 SIGNAIEITON SEIVICE.veiiie ettt sttt e b e e e nbe e st e e sbeesnneennee s 50
5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.c.cooeoiiirere e 52
6 PRECEDENCE OF SERVICE PRIMITIVES.......coooi it 52
7 SERVICE USER GUIDELINES. ...ttt st 52
8 SERVICE PROVIDER-SPECIFIC INFORMATION. ...cctcitiiiieieiesiese e e 52
S 1 OSSPSR 53
SN L@ A . ST RRRR 53
9.2 APl BUILDING BLOCK. ...utitiiiiiiieiieiesiese ettt sttt sse st st s s e eneenes 67
0 1Y SR 70
10.1 CONTROLLER DIAGRAM. ..ccutiuiiiiiiieiesiisie st st siesesee et st bbb ee st ssesbessessesneeneas 70
10.2 USER DIAGRAM. ...utiitiitietisiesiesteete e stestesteste st sesseesessessesbessessesseeseeneensessessessessessenneenens 71

JTRS Input / Output API

rev 1.0

10.3 PROVIDER DIAGRAM......oitiitiitisiieiesiesieste st ste st e esseesessessesbessessessesseeneensestessessessessessesneas 71
10.4 ULONGPACKET DIAGRAM. ..ccuoiuiiuieiesiesiesiestesieeseeeeseessessessessessessesseesensessessessessessessennens 72
10.5 COMPONENT DIAGRAMciuiitietieuieiestestestestesseesesseesessessessessessessesssesessessessessessessesssenes 73

List of Figures
Figure 1-1. Service Definition OVEIVIEW.......ccciiiiiiiieeeieeeeeste st 1
Figure 3-1. 1/O CONfIQUIBLION.cccueieesieeieeteeseeieseesieeaeseesteeeesseesseeseesseesseeeesseesseessesseensennsesses 6
FIQUrE 3-2. 1/O CONLIOL ...ttt et et e et e eesre e s e e e e e ne e seenneens 7
Figure 3-3. Audio AlertS and AlBIMS..........ccoiiiiiiiiiei e 9
FIQUrE 3-4. SIgNaIRTS ...ttt e bbb 10
Figure 3-5. Sequence Diagram, VOICE......ccviiieereeeseeseetesee e e e a e e e aesseesreeeesneensens 11
Figure 3-6. Service User FIOW CONIOl..........c.oiieiiriiiieseeiesee ettt 13
Figure 3-7. Service Provider FIOW CONIOL.........coiiiiirieiieeesesesesie e 13
Figure 3-8. Data TranSfer.......ccueiieie ettt e e ae e e sneenne s 14
Figure 3-9. Service Provider EMPty SIgNal.........cooveiieiiiiiie ettt 14
FIgure 3-10. TOEITOrSIGNEL.......c.coueiuerieeeeieiesiesi ettt sttt r et sn e nn e 15
Figure 10-1. UML Controller RE@iONSNIPS........ccviueiieereeieeieseesieseeseeseeseesieeaesseesseesesseessens 70
Figure 10-2. UML User, Data Packet REIationShips.........cccveeeieeieieeiecie e 71
Figure 10-3. UML Provider, Data Packet ReElationShips.........ccoovrieiieneniiinieneee e 71
Figure 10-4. UML UlongPacket RElationsShips..........ccccreriiiirinenescseseeeee e 72
Figure 10-5. CompPoNnent DIBOIAIM........ccueiieieieerieeeseesieeeeseesesseesseesseesesseesseesesseesseesessesssens 73
List of Tables

Table 1. Cross-Reference of Non-Real-Time Services and Primitives..........ccccovvvenenenenenennnn, 4
Table 2. Cross-Reference of Real-Time Services and Primitives..........ccocceveeienenenieneenieeenne 12

JTRS Input / Output API
rev 1.0

1 INTRODUCTION.

1.1 OVERVIEW.

This document specifies an SCA conformant 10 layer Application-Programming Interface (API)
service definition. It provides the interface definition for Audio and Data /O Service providers.
This APl provides the following Non-Real-Time Services:

1. 1/O Configuration: providesinitia or subsequent configuration of a data device.
2. 1/O Control: provides operational control of Audio and Data Devices.

3. Audible Alertsand Alarms: provides a Service User the ability to define and control
audible aerts and alarms generated by an 1/0 Audio device.

4. 1/0 Signals: dlows an 1/0O device to signal arequest to transmit (PTT) to other APIs,

and the following Real-Time Services:

5. Packet: provides the mechanism to establish packet queues and exchange data packets
with 1/0 Devices.

6. 1/0 Error Signal: provides a mechanism for a packet Service Provider to inform a
Service User when a packet contains errors.

The I/O AP is constructed by instantiating the SCA Audio 1/0 Building Block and SCA Generic
Packet Building Block with the specific parameter types.

Waveform Service-layers are shown in Figure 1-1. Services defined in this APl are used in
conjunction with APIs for other layers to form a complete application-programming interface
(AP).
A : Data and Real-time
Control

> B Non-real-time Control,
Setup and Initialization,
from applications, other

levels, user interface
Network
Waveform
Application A$ A$
LLcC > B LLC B
A]
A v |
MAC > B
10
API
h " 4
External
110 B Physical B Network
Connection

Figure 1-1. Service Definition Overview

JTRS Input / Output API
rev 1.0

Note: Identification and details concerning exceptions on all interfaces will be supplied in alater
version of this document in accordance with SCA requirements and good engineering practice.

1.2 SERVICE LAYER DESCRIPTION.

I/O Building Blocks (BBs) specified by the SCAS I/0O BB provide the fundamental structure for
defining interfaces for SW resources to communicate with specific types of 1/0 devices. Thel/O
BBs are instantiated and extended by the I/O API. The SCA 1/0O Building Blocks are defined as:

I/O Configuration

1/O Control

Audible Alerts and Alarms
I/O Signals.

The 1/0 API extends BBsto provide service for audio and data devices.

1.3 MODESOF SERVICE.

There are three modes of service defined at this leve for the I/O API: Transmit mode, Receive
mode and Idle (or Passive Receive). Further definition of service modesis provided in later
sections of this document.

1.4 SERVICE STATES.

Service states are defined in Sections 3 and 4 of this document, as required.

JTRS Input / Output API
rev 1.0

1.5 REFERENCED DOCUMENTS.
Document No. Document Title
MSRC-5000SCA Software Communications Architecture Specification

MSRC-5000API Application Program Interface Supplement to the Software
Communications Architecture Specification, Appendix H, 1/0 Building
Block Service Definition

MSRC-5000API Application Program Interface Supplement to the Software
Communications Architecture Specification, Appendix C Generic Packet
Building Block Service Definition

2 UUID.
The UUID for this APl is8aef 0960- d1d3- 11d4- 8cc8- 00104b23b8a2.

JTRS Input / Output API
rev 1.0

3 SERVICES.
Two kinds of services are provided, real-time and non-real-time.

3.1 NON-REAL-TIME SERVICES.

The features of Non-Real-Timeor "B" interfaces are defined in terms of services provided by the
Service Provider, and the individua primitives that may flow between the Service User and
Service Provider.

The non-real-time services are tabulated in Table 1 and described more fully in section 4.1.

Tablel. Cross-Reference of Non-Real-Time Services and Primitives

Service Group Service Primitives
Audio I/O Configuration | Configuration DataSamplesize
Enable - CVSD
Version
AudioModuleName
AudioChanNumber
LPC10Enable
Data /0O Configuration Flow Control HWF owControl
XonXoffControl
None
Asynchronous dataRatelnHz
Port NumberOf StopBits
Configuration ParityBit
NumberOfDataBits
NumberOf StartBits
Synchronous Port | dataRatelnHz
Configuration

JTRS Input / Output API

rev 1.0

Table 1. Cross-Reference of Non-Real-Time Services and Primitives - Continued

Service Group Service Primitives
Audio 1/0 Control Gain Control SideToneGainindB
OutputGainindB
MicrophoneGainindB
AGC Control AGCAttackTimelnmS
AGCRdeaseTimelnmS
AGCDynamicRangelndB
Output Control AudioOutputEnabled
SidetoneEnabled
rxTraffic
Input Control EnableRTS/ICTS
SatCTS
txTraffic
RT Status txActive
rxActive
Data 1/0 Control Input Control EnableRTS/CTS
SatCTS
RT Status txActive
rxActive
Data Mode DDMCActive
Control ADMCActive
I/O Signds PTT State SgnaRTS
Audible Alerts And Alarms | Tones createTone
startTone
stopTone
stopAllTones
Beeps createBeep
cendBeep
Status txActive

rxActive

JTRS Input / Output API
rev 1.0

3.1.1 I/O Confiquration.

1/O Configuration interfaces are obtained by instantiating the SCA 1/0 API Building Block
ConfigurationType parameter with concrete types. AudioConfigurationType is used to redlize a
Audiol OConfiguration interface stereotype. And DataConfigurationType is used to redize a
Datal OConfiguration interface stereotype.

3.1.1.1 AudiolOConfiguration.

This interface provides services, shown in Figure 3-1, that are used to configure aradio’s audio
interface to an operator. Audio devices are uniquely accessed viatheir object reference.
3.1.1.2 DatalOConfiguration Interface.

The Datal OConfigurationInterface provides data port configuration services. Interface details
are defined by instantiating the Datal OConfiguration Interface using FlowConfigurationType
and DataConfigurationType definitions, as shown in Figure 3-1. Data Ports are uniquely
accessed viatheir object reference.

,configurationType

<<API Building BTSEK==
lOConfiguration
(from 10_BB)
sconfiguration : ConfigurationType

24
<<instantiation>>-"

///
-
L
<<Interface>>

AudiolOConfiguration
~configuration : AudioConfigurationType

.
~
<<instantiation>=~_
~

<<Interface>>
DatalOConfiguration
~configuration : DataConfigurationType

*setFlowConfig(flowControl : in FlowConfigurationType) : void

T
: <<uses>> ; ~.
AV

/ .
P N,
<<CORBAStruct>> Ve N\ S<uses>>
AudioConfigurationType Lz ==uses>> b
: N,
~CVSDParameter : CVSDParameterType <<CORBAUnion=>> N
sVersion : string DataConfigurationType .
»AudioModuleName : string »syncDataPort : SyncDataType \‘
~AudioChannelNumber : unsigned short ~»asyncDataPort : AsyncDataType —<CORBAENUM=—=—
»LPCl10Enable : boolean FlowConfigurationType
/ K S~o ~HFWFlowControl
H / AN S — — XonXoffControl
II II \\ ~. uses: sNone
I} \ N
II <<uses>> // <<uses>> \\\ \‘\\
.
\!'/ / \ <<uses>> Sso
/ \ .
<<CORBAStruct>> v N Sy
CVSDParameterType <<CORBAStruct>> N <<CORBAStruct>>
~DataSamplesize : unsigned short AsyncDataType \\ SyncDataType
~senable : boolean ~dataRatelnHz : unsigned short N ~dataRatelnHz : unsigned short
~NumberOfStopBits : unsigned short \
~ParityBit : boolean AN
~NumberOfDataBits : unsigned short N
ANumberOfStartBits : unsigned short <=<CORBAENuUM=>>
DataDiscriminator

~SynchronousData
sAsynchronousData

Figure 3-1. 1/0O Configuration

3.1.2 I/O Control Services.

The I/0O Control Service Group (Figure 3-2) defines the interface for controlling the operational
parameters associated with Audio and Data Devices. The SCA Audio Control Building Block is
extended by instantiation of Audio and Data specific controls. The parameters listed below are
implemented as Class Attributes. There are read and write operations associated with each
attribute. The Service Group’s operations facilitate use of RTS/CTS to provide radio push to talk

JTRS Input / Output API
rev 1.0

(PTT) to the Waveform API. The auto-generated "get" and "set" operations are used to set and
read the state of the txActive and rxActive attributes. Except where they are defined in the
building blocks, the use of attributes and their default "get"/"set" operations has been avoided
since they do not support user-defined exceptions.

“ioControlT
]

]
<<API Building BLIock>>
I0Control
(from 10_BB)

Zxwparameters : ioControlType
2. txActive : boolean

*enableRTS_CTS(Enable : in boolean) : void
*setCTS(CTS : in boolean) : void

<<instantiation>z AN
,’I \\\
,,/ N\,
4
4

\,
<<instantiation>%

<<Interface>>
AudiolOControl

<<Interface>>
DatalOControl

~parameters : AudiolOControlType
SmtxActive : boolean
SmrxActive : boolean

~parameters : DatalOControlType
#utxActive : boolean
rxActive : boolean

*enableRTS_CTS(Enable : in boolean) :
*setCTS(CTS : in boolean) : void

*txBegin(TxTraffic : in TrafficType) : void
*rxBegin(RxTraffic : in TrafficType) : void

void *enableRTS_CTS(Enable : in boolean) : void
*setCTS(CTS : in boolean) : void
*txBegin(TxTraffic : in TrafficType) : void

*rxBegin(RxTraffic : in TrafficType) : void

N\,
/ ~

\,

T

\
! \, <<uses>> ,/ ‘\‘
/ AN J/ \ <<uses>>
/ <<uses>> AN s \
/ N ,/ <<uses>> N
v N A
<<CORBAStruct>>
Au<d<' | CD)S[r ucItT>> <<CORBAENnuUm=>> DatalOControlType
10 ntrol Type TrafficType -
»Si deToneGai nl ndB : unsi gned short #SCPT ;-DDMCAct_lve X boolean
AACCAL t ackTi mel nnS @ unsi gned short ASCCT AADMCActive : boolean
AACCRel easeTi mel nns @ unsi gned short AFHPT
AACCDynam cRangel ndB : unsi gned short AFHCT
AAudi oQut put Enabl ed : bool ean
»Si det oneEnabl ed : bool ean
»Qut put Gai nl ndB : short
»M crophoneGai nl ndB : short

Figure 3-2. 1/0 Control

3.1.3 Audible Alerts and Alarms Service.

The Audible Alerts and Alarms Service Group provides sound (Tone and Beep) control
interfaces. The interface details of each alert and alarm are defined by instantiating the Audio
Alerts and Alarms Building Block using ToneProfileType definitions and BeepProfileType, as
shown in Figure 3-3. The auto-generated "get” and "set" operations are used to set and read the
state of the txActive and rxActive attribute. Except where they are defined in the building
blocks, the use of attributes and their default "get"/"set" operations has been avoided since they
do not support user-defined exceptions.

The Audible Alerts And Alarms Service Group provides the Service User with the capability to
configure and control tones in the operator’ s handset that are generated by the Service Provider
and txActive and rxActive services to the Audio 1/0 Service User. A single beep occurs each

JTRS Input / Output API
rev 1.0

time the sendBeep operation isinvoked. Beeps are defined as a single frequency tone with an
associated amplitude and duration.

A repesating tone begins when the startTone operation is invoked and ends when the stopTone
operation is invoked. Repeating tones are defined as a single frequency tone with associated
amplitude, and On-time and Off-time duration.

A multi-tone begins when the startTone operation is invoked and ends when the stopTone
operation isinvoked. Multi-tones are defined by multiple frequency and duration.

A continuous tone begins when the startTone operation is invoked and ends when the stopTone
operation isinvoked. They are defined as a single frequency and associated amplitude.

AudibleAlertsAndAlarms
(from 10_BB)

wcreateTone(ToneProfile : in toneProfileType) : IdType
wstartTone(Toneld : in IdType) : void

“stopTone(Toneld : in IdType) : void
wstopAllTones() : void

*createBeep(Beep : in BeepType) : IdType
wsendBeep(Beepld : in IdType) : void

<<instantiation

\%

<<Interface>>

Audible_AlertsAndAlarms
S ixActive : boolean

HrxActive : boolean

“createTone(ToneProfile : in ToneProfileType) : 10_API:I0_BB::IdType
“startTone(Toneld : in I0_API::10_BB:IdType) : void
“'stopTone(Toneld : in I0_API::I0_BB::IdType) : void
“stopAllTones() : void

“createBeep(Beep : in BeepProfileType) : I0_API:10_BB:IdType
“sendBeep(Beepld : in IO_API:10_BB::IdType) : void

JTRS Input / Output API
rev 1.0

<<uses>>
! y \\\ <<CORBAUnion>>
/ \ N BeepProfileType
/ ‘\\ Y »CTTrafficBeep : I0_API::IO_BB::BeepType
/ <<uses>> \ #COMSECLoadBeep : IO_API::I0_BB::BeepType
2 \ #FillZeroizedGoodBeep : IO_API::IO_BB::BeepType
<<CORBAUnion>> \ <<uses>> AFHLoadTransferBeep : IO_API::I0_BB::BeepType
ToneProfileType \\ »CueBeep : I0_API::I0_BB::BeepType
~CTAlarm ; AlarmType \ »ZeroizeBadBeep : IO_API::IO_BB::BeepType
L i \, ~HoldingMemoryTransferBeep : I0_API::10_BB::BeepType
;»PTOvernde_AIarm - AlarmType N\ ~TransmitERFBeep : IO_API::IO_BB::BeepType
#DatalnHoldingMemoryAlarm : AlarmType \ ANetiDChangeBeep : 10 API-IO_BB:BeepType
»PacketBusyAlarm : AlarmType AN P g. P o e pyp
#PTModeAlarm : MultiToneAlarmType N 4 ~B|tEa|IBe_Tp - 10_API:I0_BB:BeepType
ACOMSECParityAlarm : AlarmType <<CORBATypedeis> #ActiveFailBeep : I0_API:10_BB::BeepType
IdType + N
7 \ . <<uses> (from 10_BB) / \
1 \ N, 1 \
) \ N) \
1 \ N, 1 \
] \ N ! \
] \) I <<uses>> \ <<uses>>
| <<uses>>\ AN ! \
] \ N, 1 \
! \ RN %4 \

2 \ <<CORBAStruct>> ~<CORBAS{rUCHS \
<<CORBAENnum>> \‘ MultiToneAlarmType BeepType {‘J
AlarmDiscriminator \ 2numberOfTones : unsigned short (from 10_BB) —<CORBAE -

ACT \ <<uses>> »Tonel : AlarmType frequencylnHz : unsigned short BeepDiscri n.umt
APTOverride \ »Tone2 : AlarmType adurationinMs : unsigned short cepoiscrminator
»DatalnHoldingMemory \ »Tone3 : AlarmType beeplLevelindB : short ACTTraffic
APacketBusy \ »SeqRepeateTimelnms : unsigned short #COMSECLoad
APTMode \ #FiliZeroizedGood
#COMSECParity \ 7 AFHLoadTransfer
\ / »Cue
\ / #ZeroizeBad
\ ,/ #HoldingMemoryTransfer
\ / <<uses>> ATransmitERF
'))4 NetIDChange
<<CORBAStruct>> #BitFail
AlarmType #ActiveFail
AFrequencylnHz : unsigned short
A0OnTimelnmS : unsigned short
AOffTimelnmS : unsigned short
AToneLevellndB : short

Figure 3-3. Audio Alertsand Alarms

JTRS Input / Output API
rev 1.0

3.14 I/O Signals Service.

The signalRTS interface alows the 1/O Service Provider to signal the state of push-to-talk (PTT)
to other JTRS layers. When PTT is active, RTS is TRUE indicating the intent to send traffic.
RTS dtate transitions follow PTT state transitions in near real-time.

<<Interface>>
10Signals
(from 10_BB)

*signalRTS(RTS : boolean) : void

Figure 3-4. signalRTS

signalRTS is used in conjunction with Audio Control methods enableRTS/CTS and setCTS as
shown in Figure 3-4 Sequence Diagram, Voice. An 1/O User controls upstream flow of handset
audio samples using RTS/CTS, when the enable RTS/CTS method has been invoked with
boolean set to "True".

A Voice User signals arequest to transmit, via handset push-to-talk (PTT), to the I/O, which
forwards this request upstream by invoking the signalRTS method. When the MAC recognizes a
transition of RTS to "True", it determines what action will be taken. If conditions are right, the
MAC responds to the voice transmission request by invoking the setCTS method on the
INFOSEC. Thisinitializes the COMSEC function. At the completion of COMSEC
initialization, a beep isissued to the handset and CTS is set to "True" indicating to the 1/0 that
the COMSEC is ready to accept samples of handset microphone audio. Samples are then pushed
upstream by the 1/0 aslong as RTS and CTS are both "True". Upon release of handset PTT,
RTSis set to "False" and upstream transfer of audio samplesis terminated. When the COMSEC
has processed the last audio sample, CTSis set to "False". CTS may also be set to "False" due to
a COMSEC aarm condition.

10

1T

Voice User

10 INFOSEC

-

PTT pushed Iﬁ

Audio

signalRTS(true)

Physical |

signalRTS(true)

setCTS(true)

setCTS(true)

Send voice o
data

pushPacket()

e
-

PTT releasedlﬁ

End voice)
Transmittion

signalRTS(false)

L

signalRTS(false)

pushPacket()

setCTS(false)

T
1
1
setCTS(false) |_'_|\

Figure 3-5. Sequence Diagram, Voice

IdV IndinQ / indu| SYIC

0T Ml

JTRS Input / Output API
rev 1.0

3.2 REAL TIME SERVICES.

The features of Rea-Timeor "A" interfaces are defined in terms of services provided by the
Service Provider, and the individua primitives that may flow between the Service User and
Service Provider.

To provide upstream and downstream transfer of Audio packets between Service Users and
Providers, the SCA Packet Building Block is instantiated with Payload and Control types
suitable for implementing an 1/0 device. Figure 10-4, I/O Packet, shows the instantiation of the
Packet Building Block and utilization of the Packet Signals Building Block.

Note: For waveforms that do not utilize queues, the control types should be ignored and only the
pushPacket method will be used.

Real-time services are tabulated in Table 2 and described more fully in section 4.2.
Table2. Cross-Reference of Real-Time Services and Primitives

Service Group Service Primitives

I/O Down Stream Provider | Flow Control M axPayloadSize

Queue MinPayloadSize
SpaceAvailable
NumOfPriorityQueues
SetNumOfPriorityQueues
enableFlowControl Signals
enableEmptySignal

Packet pushPacket

I/0O Up Stream Provider Flow Control M axPayloadSize

Queue MinPayloadSize
SpaceAvailable
NumOfPriorityQueues
SetNumOf PriorityQueues

enableFlowControl Signals
enableEmptySignal

Packet pushPacket

1/O Error Signal Packet Data Error | SignalError

3.2.1 Packet.

I/O Packet interfaces for data transfers are based on SCA Generic Packet Building Blocks, as
shown in Figure 10-4.

12

JTRS Input / Output API
rev 1.0

3211 Flow Control.

Flow control is provided for both Service Users and Service Providers as shown in Figure 3-6
and Figure 3-7.

10 : User 10 : Provider__{

| spaceAvailable(in octet) |

L

Returns the o
number of traffic pushPacket(octet, in AudioControlType, in CF::UlongSequence)
units available /|_ J

Figure 3-6. Service User Flow Control

10 : User 10 : Provider |

enableFlowControlSignals(in boolean)

_____________________________________ 1

Turn on Service -
. L
Provider flow control !
1

[l

""""""""""""]

User sends packets - L
until high water mark
is reached

-

- P
- -
- —
- -

User waits for the low -
water mark to be
achieved before
sending more data.

1
[}
1
[l
- [}
- 1
- -
—— I
-]
1
[}
1
[l
[}

Figure 3-7. Service Provider Flow Control

13

JTRS Input / Output API

rev 1.0
3.21.2 Data Transfer.
pushPacket data transfer is shown in Figure 3-8..
10 : User 1O : Provider
1 pushPacket(octet, in AudioControlType, in CF::UlongSequence)
Figure 3-8. Data Transfer
3213 Signds.
Service Providers signal all of their queues are empty as shown in Figure 3-9.
10 : User 1O : Provider

! enableFlowControlSignals(in boolean) !

Turn on provider - signalEmpty()

notification of L
empty queue. |T|\

Provider sends
signals when all
gueues are empty.

Figure 3-9. Service Provider Empty Signal

14

JTRS Input / Output API
rev 1.0

3.22 10ErrorSignal Service.
The I0ErrorSignal Service is shown in Figure 3-10.

<<Interface>>
IOErrorSignal

“signalError(errorDetails : in IOErrorType) : void

<<uses>>

<<CORBAEnum>>
IOErrorType
AErrorinvalidData : boolean
#ErrorBadData : boolean
AErrorCRC : boolean

Figure 3-10. 10ErrorSignal

15

JTRS Input / Output API
rev 1.0

4 SERVICE PRIMITIVES.
The 1/0 uses non-real-time and real-time service primitives.

Except where they are defined by a SCA Building Block, the use of attributes and their default
"get"/"set" operations is avoided as they do not support user-defined exceptions.

4.1 NON-REAL-TIME PRIMITIVES.
These primitives support the "B" interface shown in Figure 1-1.
4.1.1 1/O Configuration.

The SCA 1/0 Building Block is instantiated twice. Once with a configuration Type of
AudiolOConfiguration and again with a configuration Type Datal OConfiguration.

4.1.1.1 AudiolOConfigurationAttribute.

The Audiol OConfiguration attribute provides Service Users with the capability to configure the
Service Providers audio functions.

41111 Synopss.
attribute Audiol OConfigurationType configuration

Configuration is an attribute, whose "Get" and "Set" functions are auto-generated.
41112 Parameters.
configuration
This parameter has the following structure:
Struct AudiolOConfigurationType {
CV SDParameterType CV SDParameter;
string Version,
string AudioModuleName
unsigned short AudioChannelNumber
boolean LPC10Enable
b
CVSDParameter

This parameter allows the Service User to set/get the sample size (e.g.,
bits/sample) of audio data samples produced by the Service Provider.

The CVSDParameter parameter has the following structure:
Struct CVSDParameterType {

Unsigned short DataSamplesize

boolean enable

16

JTRS Input / Output API
rev 1.0

DataSamplesize
Specifies the number of data-bits per audio sample.
enable
Activates CVSD.
Version
conveys the Version Number of the Service Provider module.
AudioModuleName
conveys the Name of Service Provider module.

LPC10Enable
Tells the Audio waveform to send and receive LPC10 data.
41113 State.

Any valid state as defined by the "parameters" parameter.

41114 New State.

Any valid state as defined by the "parameters’ parameter.

41115 Response.

It is the Service User's responsibility to verify the parameters were "set” via the "get" operation.
4.1.1.1.6 Originator.

Waveform Application.

4.1.1.1.7 ErrordExceptions.

None.

4.1.1.2 DatalOConfiguration
4.1.1.2.1 DataConfigurationType.

The DataConfigurationType attribute provides Service Users with the capability to configure a
Service Provider’s data port to be either synchronous or asynchronous, as well as to "set"/"get"
other port parameters.

411211 Synopsis.

attribute DataConfigurationType configuration;

Configuration is an attribute, whose "Get" and "Set" functions are auto-generated.

411212 Parameters.
configuration

This parameter specifies one of two types of configuration data, synchronous or
asynchronous:

union DataConfigurationType switch(DataDiscriminator) {

17

JTRS Input / Output API
rev 1.0

case SynchronousData: SyncDataType syncDataPort;
case AsynchronousData: AsyncDataType asyncDataPort;
};
DataDiscriminator
Indicates the type of configuration to the 1/O data port Service Provider:
SynchronousData conveys configuration data is for synchronous operation.
AsynchronousData conveys configuration data is for asynchronous operation.
syncDataPort
This parameter has the following structure:
struct SyncData T {

unsigned short DataRatelnHz;
};
dataRatelnHz indicates to the Service Provider the rate, in Hertz, of the
data-clock output required to exchange MIL-STD-188-114
data with connected data terminal equipment. Datarateis
provided via Resource Config/Query.
asyncDataPort

This parameter is used to configure an asynchronous data port and has the
following structure:

struct AsyncDataType {
unsigned short dataRatelnHz;
unsigned short NumberOf StopBits;
unsigned short ParityBit;
unsigned short NumberOf DataBits;
unsigned short NumberOf StartBits,
};
dataRatelnHz indicates the RS-232 Baud rate which the Service Provider
will use to exchange data with a data terminal. Typical

values are 1200, 2400, 4800, 9600. Datarateis provided
via Resource Config/Query.

Number OfSopBits indicates the number of Stop Bits. E.g., None, 1 or 2.

ParityBit indicates the parity configuration. E.g., 0 = None, 1 = Odd,
2 = Even, 3= Mark, 4 = Space.

NumberOfDataBits indicates the number of Data bits. E.g., 4, 5, 6, 7 or 8.
NumberOfSartBits indicates the number of Start bits. E.g., 1 or 2.

18

JTRS Input / Output API
rev 1.0

411213 State.
Any operational state.

4.11.21.4 New State.
The flow Control State of the 1/0 device is changed to provide the type of flow control specified.

411215 Response
It is the Service User's responsibility to verify the parameters were "set” via the "get" operation.

4.1.1.2.1.6 Originator.
Waveform Application.

4.1.1.2.1.7 Errors/Exceptions.

None.

41122 setFlowConfig.

The setFlowConfig service provides a Service User with the capability to configure flow control,
between a connected data terminal and Service Provider.

4.1.1.2.21 Synopsis.

void setFlowConfig (in FlowConfigureType flowControl);

411222 Parameters.
flowControl

Conveys the type of digital data flow control to be used between a connected data
terminal and Service Provider:

HWHF owControl indicates hardware flow control
Xon/XoffControl indicates Xon/Xoff protocol is used for flow control
None indicates flow control is not provided.

411223 State.
Any operationa state.

411224 New State.
The flow Control State of the I/O device is changed to provide the type of flow control specified.

411225 Response.
It is the Service User's responsibility to verify the parameters were "set” via the "get" operation.

4.1.1.2.2.6 Originator.
Waveform Application.

19

JTRS Input / Output API
rev 1.0

4.1.1.2.2.7 Errors/Exceptions.
None.

20

JTRS Input / Output API
rev 1.0

4.1.2 1/O Control Services.
The following services support the 10 interface to the radio operator.

4121 Audio I/O Control.

The Audio 1/0O Control interface is an installation of the SCA Audio Building Block. The BB’s
ioControl Type parameter is replaced with the Audiol OControl Type parameter to provide a
concrete class for audio 1/O control.

41211 AudiolOControl Type Attribute.

41.21.1.1 Synopss.
attribute AudiolOControl Type parameters,

Parameters is an attribute whose "Get" and "Set" functions are auto-generated.

412112 Parameters.

parameters
This parameter has the following structure:
struct AudiolOControl Type {

unsigned short SideToreGainindB;
unsigned short AGCAttackTimelnmsS;
unsigned short AGCReleaseTimelnmS;
unsigned short AGCDynamicRangelndB;
boolean AudioOutputEnabled;

boolean SidetoneEnabled;

short OutputGainindB;

short MicrophoneGainlndB;

};

SdeToneGainindB sets the Sidetone audio level delivered to the handset with
respect to the received audio level, in dB. (e.g., -20dB
specifies the Sidetone audio level will be 20 dB below the
received audio level). This parameter may be dynamically
set during operation.

AGCAttackTimelnmS sets the Attack Time, in milliseconds, of the AGC applied
to incoming audio from a microphone. This parameter may
NOT be dynamically set during operation.

AGCReleaseTimelnmS sets the Release Time, in milliseconds, of the AGC applied
to incoming audio from a microphone. This parameter may
NOT be dynamically set during operation.

AGCDynamicRangelndB sets the dynamic range of the AGC applied to incoming
audio from a microphone to keep it within the range of the

21

JTRS Input / Output API
rev 1.0

A/D converter that is sampling the input audio. This
parameter may NOT be dynamically set during operation.

AudioOutputEnabled Boolean TRUE enables audio output; FAL SE disables
audio output. This parameter may be dynamically set
during operation.

SdetoneEnabled Boolean TRUE enables audio output; FAL SE disables
audio output. Thisis used to gate sidetone audio ON
during voice traffic and OFF during data traffic. This
parameter may be dynamically set during operation.

OutputGainindB sets the level, in dB, of the audio output to a handset or
speaker during receive and is used to provide volume
control. This parameter may be dynamically set during
operation.

MicrophoneGainindB sets the level in dB of the gain applied to audio from the
microphone to adjust between Normal and Whisper modes.
This parameter may be dynamically set during operation.

412113 State.
Any operational state.

41.2.1.1.4 New State.

For al current and future receive operations, the Audio device implements the commanded
states.

412115 Response.
It is the Service User's responsibility to verify the parameters were "set” via the "get" operation.

4.1.2.1.1.6 Originator.
Waveform Application.

4.1.2.1.1.7 Errors/Exceptions.

None.

41.21.2 txActive Attribute.

This attribute allows the Service User to get the Transmit State of the Audio 1/0 Device.

41.21.21 Synopss.
readonly attribute boolean txActive

txActive is an attribute whose "Get" function is auto-generated.

22

JTRS Input / Output API
rev 1.0

4.1.2.1.2.2 Parameters.
None.

412123 State.
Any operationa state.

4.1.2.1.2.4 New State.
None.

412125 Response.
The auto generated Get function returns boolean values:
txActive = True
Indicates the I/O device is transmitting data (i.e., pushing packets downstream).
txActive = False
Indicates the I/O device is not transmitting data.

4.1.2.1.2.6 Originator.
Waveform Application.

4.1.2.1.2.7 ErrordExceptions.

None.

4.1.21.3 rxActive.

This attribute allows the Service User to get the Receive State of the Audio 1/0 Device.

4.1.2.1.31 Synopsis.
readonly attribute boolean rxActive

rxActive is an attribute whose "Get" function is auto-generated.

4.1.2.1.3.2 Parameters.

None.

412133 Sate.
Any operational state.

4.1.2.1.34 New State.
None.

412135 Response.
The auto generated Get function returns boolean values:

23

JTRS Input / Output API
rev 1.0

rxActive = True
Indicates the I/O device is recelving data (i.e., pushing packets upstream).
rxActive = False

Indicates the I/O device is not receiving data.

4.1.2.1.3.6 Originator.
Waveform Application.

4.1.2.1.3.7 Errors/Exceptions.
None.
41214 enableRTSCTS Service.

This attribute provides Service Users with the ability to convey to the Service Provider the
desired flow control method to be used when pushing I/O data upstream via pushPacket.

When RTS/CTS is enabled, the Service Provider pushes data upstream when Request To Send
(RTS) is active (indicating handset PTT is active) and Clear To Send (CTS) is active (indicating
the modem is ready to accept I/0O data). When disabled, the Service Provider will push packets
upstream when handset PTT is active, regardless of the state of CTS. The norma mode of
SINCGARS operation isto enable RTS/CTS. During Single Channel Plain Text operation,
RTS/CTS may be disabled.

41.21.4.1 Synopss.

oneway void enableRTS/CTS (in boolean Enable);

4.1.2.1.4.2 Parameters.
Enable= True

Conveys to the downstream data provider to push I/O data samples upstream under the
control of the RTSand CTS signals.

Enable = False

Conveys to the downstream data provider to unilaterally push /O data samples upstream
(e.g., ignore RTS and CTYS).

412143 Sate.
Any operational state.

412144 New State.

For al current and future transmit operations, the data device implements the commanded flow
control configuration.

If Enableis"TRUE", I/O samples are pushed upstream under the control of RTS or CTS.
If Enableis"FALSE", I/0O samples are pushed upstream and RTS and CTS are ignored.

24

JTRS Input / Output API
rev 1.0
412145 Response.
It is the Service User's responsibility to verify the parameters were "set" via the "get" operation.

4.1.2.1.4.6 Originator.
Waveform Application.

4.1.2.1.4.7 ErrordExceptions.
None.
41215 setCTS Service.

The Set Clear To Send (CTS) operation provides a Service User the ability to control the
upstream flow of microphone audio samples or data samples from the Service Provider.

4.1.2.1.5.1 Synopsis.
oneway void setCTS (in boolean CTS);

412152 Parameters.
CTS= True

Conveys to the downstream data provider the upstream data user is ready to accept data
via the pushPacket transfer mechanism.

CTS= False

Conveys to the downstream data provider the upstream data user is not ready to accept
data via the pushPacket transfer mechanism.

412153 Sate
Any operational state.

4.1.2.1.5.4 New State.

For all current and future transmit operations, the data device implements the commanded CTS
date.

If RTSis"TRUE" and CTSis"TRUE", /O samples are pushed upstream until either RTS or
CTS becomes "FALSE".

412155 Response.
It is the Service User's responsibility to verify the parameters were "set” via a "get" operation.

4.1.2.1.5.6 Originator.
Waveform Application.

4.1.2.1.5.7 Errors/Exceptions.
None.

25

JTRS Input / Output API
rev 1.0
41216 txBegin.

The txBegin attribute is used to configure the audio path for voice transmission. Based on the
transmitter traffic mode, analog audio is routed through the CVSD or the CV SD is bypassed
(bypassed in SCPT).

4.1.21.6.1 Synopss.
void txBegin (in TrafficType TxTraffic);

4.1.2.1.6.2 Parameters.

TxTraffic
Indicates the traffic mode of the radio:
SCPT indicates Single Channel Plain Text
SCCT indicates Single Channel Cipher Text
FHPT indicates Frequency Hop Plain Text
FHCT indicates Frequency Hop Cipher Text

412163 Sate.
Any operational state.

4.1.2.1.6.4 New State.

For al current and future transmit operations, the data device implements the commanded audio
path configuration.

412165 Response.
It is the Service User's responsibility to verify the parameters were "set” via the "get” operation.

4.1.2.1.6.6 Originator.
Waveform Application.

4.1.2.1.6.7 Errors/Exceptions.
None defined.
4.1.2.1.7 rxBegin.

The rxBegin attribute is used to configure the audio path for voice reception. Based on the
receiver traffic mode, analog audio is routed through the CVSD or the CVSD is bypassed
(bypassed in SCPT).

4.1.2.1.7.1 Synopsis.
void rxBegin (in TrafficType RxTraffic);

26

JTRS Input / Output API
rev 1.0

4.1.2.1.7.2 Parameters.

RxTraffic
Indicates the traffic mode of the radio:
SCPT indicates Single Channel Plain Text
SCCT indicates Single Channel Cipher Text
FHPT indicates Frequency Hop Plain Text
FHCT indicates Frequency Hop Cipher Text

412173 Sate.
Any operational state.

4.1.2.1.7.4 New State.

For al current and future receive operations, the data device implements the commanded audio
path configuration.

4.1.2.1.75 Response.

It is the Service User's responsibility to verify the parameters were "set” via the "get” operation.

4.1.2.1.7.6 Originator.
Waveform Application.

4.1.2.1.7.7 ErrorsExceptions.
None defined.

4122 Data 1/O Control.

The Data 1/O Control interface is an instantiation of the SCA Audio Building Block. The BB's
ioControl Type parameter is replaced with the Datal OControl parameter to provide a concrete
class for audio 1/O control.

4.1.2.2.1 Datal/O Control Type Attribute.

41.2.21.1 Synopss.
attribute Datal OControl Type parameters

parameters is an attribute whose "Get" function is auto-generated.

412212 Parameters.
Not applicable.

412213 State.
Any operational state.

27

JTRS Input / Output API

rev 1.0
412214 New State.
None.
4.1.2.2.1.5 Response.
The auto generated "Get" function returns the current boolean values for the parameter.
Datal OControl Type
The Datal OCntl_T parameter has the following structure:
struct Datal OControl Type {
boolean DDMCActive;
boolean ADMCActive;
1
DDMCActive TRUE indicates the interface to the connected data
terminal equipment is MIL-STD-188-114 digital.
ADMCActive TRUE indicates the interface to the connected data

terminal equipment is analog.
4.1.2.2.1.6 Originator.
Waveform Application.

4.1.2.2.1.7 Errors/Exceptions.

None.

41.2.2.2 txActive Attribute.

This attribute provides the ability to fetch the state of the 1/0O device' s transmitting function.

41.2.2.21 Synopss.

readonly attribute boolean txActive;
4.1.2.2.2.2 Parameters.

None

412223 State.
Any operational state.

4.1.2.2.2.4 New State.
None.

412225 Response.
The auto generated "Get" function returns boolean values:
txActive = True

28

Indicates the I/O device is transmitting data.
txActive = False
Indicates the I/O device is not transmitting data.

4.1.2.2.2.6 Originator.
Waveform Application.

4.1.2.2.2.7 Errors/Exceptions.
None.
41223 rxActive.

4.1.2.2.31 Synopsis.

readonly attribute boolean rxActive;
4.1.2.2.3.2 Parameters.

None.

412233 State.
Any operationa state.

4.1.2.2.3.4 New State.
None.

4.1.2.2.3.5 Response.

The auto generated "Get" function returns boolean values:

rxActive = True

Indicates the I/O device is receiving data.
rxActive = False

Indicates the I/O device is not receiving data.

4.1.2.2.3.6 Originator.
Waveform Application.

4.1.2.2.3.7 ErrordExceptions.
None.

41224 enableRTS/ICTS Service.

JTRS Input / Output API
rev 1.0

This attribute provides Service Users with the ability to convey to the Service Provider the
desired flow control method to be used when pushing 1/O data upstream via pushPacket.

29

JTRS Input / Output API
rev 1.0
4.1.2.2.4.1 Synopsis.
oneway void enableRTS/CTS (in boolean Enable);

4.1.2.2.4.2 Parameters.
Enable= True

Conveys to the downstream data provider to push I/O data samples upstream under the
control of the RTSand CTS signals.

Enable = False

Conveys to the downstream data provider to unilateraly push /O data samples upstream
(e.g., ignore RTS and CTYS).

412243 State.
Any operational state.

4.1.2.24.4 New State.
If Enableis"TRUE", 1/0O samples are pushed upstream under the control of RTS or CTS.
If Enableis"FALSE", 1/0O samples are pushed upstream and RTS and CTS are ignored.

4.1.2.245 Response.
It is the Service User's responsibility to verify the parameters were "set” via the "get” operation.

4.1.2.2.4.6 Originator.
Waveform Application.

4.1.2.2.4.7 Errors/Exceptions.
None.
41225 SetCTS Service.

The Set Clear To Send operation provides the ability to control the upstream flow of microphone
audio samples or data samples.

412251 Synopss.

void setCTS(CTS: in boolean).
412252 Parameters.

CTS= True

Conveys to the downstream data provider the upstream data user is ready to accept data
viathe pushPacket transfer mechanism.

30

JTRS Input / Output API
rev 1.0
CTS= False
Conveys to the downstream data provider the upstream data user is not ready to accept
data via the pushPacket transfer mechanism.
412253 State.
Any operational state.

412254 New State.

If RTSis"TRUE" and CTSis"TRUE", 1/O samples are pushed upstream until either RTS or
CTS becomes "FALSE".

412255 Response.

It is the Service User's responsibility to verify the parameters were "set” via a "get" operation.

4.1.2.2.5.6 Originator.
Waveform Application.

4.1.2.2.5.7 Errors/Exceptions.
None.
41226 txBegin.

The txBegin attribute is used to configure the data path for data transmission. Analog datais
routed differently when the TxTraffic mode is SCPT. For al other traffic modes, datais
digitized.

4.1.2.2.6.1 Synopsis.

void txBegin (in TrafficType TxTraffic);

4.1.2.2.6.2 Parameters.

TxTraffic
Indicates the traffic mode of the radio:
SCPT indicates Single Channel Plain Text
SCCT indicates Single Channel Cipher Text
FHPT indicates Frequency Hop Plain Text
FHCT indicates Frequency Hop Cipher Text

412263 State.
Any operational state.

31

JTRS Input / Output API
rev 1.0
4.1.2.2.6.4 New State.

For all current and future transmit operations, the data device implements the commanded audio
path configuration.

4.1.2.2.6.5 Response.
It is the Service User's responsibility to verify the parameters were "set" via the "get" operation.

4.1.2.2.6.6 Originator.
Waveform Application.

4.1.2.2.6.7 Errors/Exceptions.
None.
4.1.2.2.7 rxBegin.

The rxBegin attribute is used to configure the data path for data transmission. Analog datais
routed differently when the RxTraffic mode is SCPT. For all other traffic modes, datais
digitized.

4.1.2.2.7.1 Synopsis.

void rxBegin (in Traffic_T RxTraffic);

4.1.2.2.7.2 Parameters.

RxTraffic
Indicates the traffic mode of the radio:
SCPT indicates Single Channel Plain Text
SCCT indicates Single Channel Cipher Text
FHPT indicates Frequency Hop Plain Text
FHCT indicates Frequency Hop Cipher Text

412273 State.
Any operational state.

4.1.2.2.7.4 New State.

For al current and future receive operations, the data device implements the commanded audio
path configuration.

4.1.2.2.7.5 Response.
It is the Service User's responsibility to verify the parameters were "set" via the "get" operation.

4.1.2.2.7.6 Originator.
Waveform Application.

32

JTRS Input / Output API
rev 1.0

4.1.2.2.7.7 Errors/Exceptions.
None.

33

JTRS Input / Output API
rev 1.0

41.3 Audible Alerts and Alarms Service.

4131 createTone Service.

The createTone Service provides the Service User with the capability to specify to the Service
Provider a set of tone profiles, each having a unique tone identifier. Once atone profileis
created, tone generation can be started/stopped using the unique tone identifier. Two types of
tones are supported: single-tone and multi-tone. Tone generation is started by the startTone
service and continues until stopped by the stopTone or stopAllTones services.

41311 Synopss.
|O_BB::1dType createTone (in ToneProfileType ToneProfile);

ToneProfile

identifies one of several types of tone profiles. Thisis necessary because different
applications generate different types of tones (i.e., — single tone, alternating tone, multiple
tones, etc.).

union ToneProfileType switch(AlarmDiscriminator) {
case CT: AlarmType CTAlarm;
case PTOverride: AlarmType PTOverrideAlarm;
case DatalnHoldingMemory: AlarmType DatalnHoldingMemoryAlarm;
case PacketBusy: AlarmType PacketBusyAlarm;
case PTMode: MultiToneAlarmType PTModeAlarm,
case COM SECParity: AlarmType COM SECParityAlarm;

H

AlarmDiscriminator
Indicates the specific parameter that specifies the type of profile to be

created.

CT specifies the CTAlarm parameter

PTOverride specifies the PTOverrideAlarm parameter

DatalnHoldingM emory specifies the DatalnHoldingMemoryAlarm
parameter

PacketBusy specifies the PacketBusyAlarm parameter

PTMode specifies the PTModeAlarm parameter

COM SECParity specifies the COM SECParityAlarm
parameter

CTAlarm

This parameter specifies the Cipher Text alarm tone profile and has the
following structure:

struct AlarmType {
unsigned short FregencylnHz;
unsigned short OnTimelnmsS;

34

JTRS Input / Output API

rev 1.0

unsigned short Off TimelnmsS;

short TonelLevellndB;
b
FrequencylnHz

Specifies the tone frequency in Hertz
OnTimelnmS

Specifies the time the tone in audible (On time) in milliseconds.
OffTimelnmS

Specifies the time the tone in inaudible (Off time) in milliseconds.
ToneLvindB

Specifies the tone level with respect to the recelved audio levd, in
dB (e.g., -20 dB specifies the aarm tone will be 20 dB below
receive audio).

PTOverrideAlarm

This parameter specifies the Plain Text Override alarm tone profile and
has the same structure as the CTAlarm parameter.

DatalnHoldingMemoryAlarm

This parameter specifies the Data In Holding Memory alarm tone profile
and has the same structure as the CTAlarm parameter.

PacketBusyAlarm parameter

This parameter specifies the Packet Busy alarm tone profile and has the
same structure as the CTAlarm parameter.

PTModeAlarm

specifies the Plain Text Mode alarm tone, which is a multi-tone alarm.
Initially, Tone 1 is generated upon receipt of a startTone command.
Subsequent occurrences of Tone 1 occur each time the Sequence Repesat
Time lapses. Tone 2 (if specified) is generated at the completion of Tone
1. Tone 3 (if specified) is generated at the completion of Tone 2. The
sequence of tonesis repeated until a stopTone or stopAll Tones command
isreceived.

The PTModeAlarm parameter has the following structure:

struct MultiToneAlarmType {
unsigned short numberOf Tones,
AlarmType Tonel;
AlarmType Tone2;
AlarmType Tone3;
unsigned short SeqRepeateTimelnmsS;

35

JTRS Input / Output API
rev 1.0

Number Of Tones
Specifies the number of tones in atone sequence: 1, 2 or 3.
Tonel

Specifies the frequency, On-time and Off-time of the first tonein a
sequence.

Tone2

Specifies the frequency, On-time and Off-time of the second tone
in a sequence.

Tone3

Specifies the frequency, On-time and Off-time of the third tonein
a sequence.

SegRepeateTimel nmS

Specifies the time interval, in milliseconds, between the start of
each occurrence of Tone 1.

COMSECParityAlarm

This parameter specifies the COMSEC Parity alarm tone profile and has
the same structure as the CTAlarm parameter.

41312 Sate.

Any operational state.

41313 New State.

The audio device adds the newly created tone to the tone database.
41314 Response.

|O_BB::1dType

Upon creation of a Tone profile, the device will return a non-zero ID that is unique with
respect to all beep and tone profile IDs.

4.1.3.1.5 Originator.
Waveform application.
4.1.3.1.6 ErrorgExceptions.
1O_BB::IdType
A value of zero is returned if the tone profile could not be created.

4132 startTone Service.

startTone provides a Service User the ability to start Service Provider generation of atone whose
profile was previously defined viathe createTone operation. A Toneld is used to specify the

36

JTRS Input / Output API
rev 1.0

profile of the tone to be started. Multiple tones may be started and each will continue until
stopped.

41321 Synopss.

oneway void startTone (in |O_BB::IdType Toneld);
41322 Parameters.

Toneld
identifies the tone profile of the tone to be generated.
41323 State.
Any operational state.
41324 New State.

The Audio device begins generation of the selected tone, if not already started, which continues
until a stopTone command is sent to the Service Provider.

41325 Response.
None.

4.1.3.2.6 Originator.
Waveform application.
4.1.3.2.7 ErrorgExceptions.
None.

4133 stopTone Service.

stopTone provides the Service User the ability to stop Service Provider generation of a
previoudly started tone. A Toneld is used to specify the tone to be stopped.

41331 Synopss.

oneway void stopTone (in 10_BB::1dType Toneld);
41332 Parameters.

Toneld

identifies the profile of the tone being generated, which invocation of StopTone will
terminate.

41333 Stae.

Any operationa state.

41334 New State.

The Audio device stops generation of the selected tone, if not already stopped.
41335 Response.

None.

37

JTRS Input / Output API
rev 1.0

4.1.3.3.6 Originator.
Waveform application.
4.1.3.3.7 ErrorgExceptions.
None.

4134 stopAllTones Service.

stopAllTones provides the Service User the ability to stop Service Provider generation of all
previoudly started tones.

41341 Synopss.

oneway void stopAllTones ();
4134.2 Parameters.

None.

41343 State.

Any operational state.
41344 New State.

The Audio device stops generation of al tones.
41345 Response.

None.

4.1.3.4.6 Originator.
Waveform application.
4.1.3.4.7 Errors/Exceptions.
None.

4.1.35 createBeep Service.

The createBeep Service provides a Service User the capability to request a Service Provider to
create a Beep profile. When the profile has been created, the Service Provider returns a unique
ID for the profile. Profiles need not be unique. However, their IDs must be unique. If a profile
is not created, an ID of zero isreturned. A set of Beep profiles can be created via multiple
invocations of createBeep. Each Beep profile is comprised of atone frequency, amplitude and
duration. Beep generation isinitiated by the sendBeep service and only one beep occurs per
invocation.

41351 Synopss.
|O_BB::IdType createBeep (in BeepProfileType Beep);

41352 Parameters.

Beep
identifies the type of beep profile to be created (e.g., COMSEC, CUE Alert, etc.).

38

JTRS Input / Output API
rev 1.0

Beep has the following structure:

union BeepProfileType switch(BeepDiscriminator) {
case CTTraffic: 10_BB::BeepType CTTrafficBeep;
case COMSECLoad: I0_BB::BeepType COM SECL ocadBeep;
case FillZeroizeGood: 10_BB::BeepType FillZeroizeGoodBeep;
case FHLoadTransfer: |O_BB::BeepType FHLoadTransferBeep;
case Cue: |0_BB::BeegpType CueBeep;
case ZeroizeBad: |O_BB::BeepType ZeroizeBadBeep;
case HoldingMemoryTransfer: |O_BB::BeepType HoldingMemoryTransferBeep;
case TransmitERF: 1O_BB::BeepType TransmitERFBeep;
case NetIDChange: IO_BB::BeepType NetlDChangeBeep;
case BitFail: 10_BB::BeepType BitFailBeep;
case ActiveFail: |O_BB::BeepType ActiveFailBeep;
b

BeepDiscriminator

Indicates the parameter to be created by the Service Provider, which will define a
specific type Beep profile:

CTTraffic selects the CTTrafficBeep parameter
COM SECL oad selects the COM SECL oadBeep parameter
FillZeroizeGood selects the FillZeroizeGoodBeep parameter
FHL oadTransfer selects the FHL oadTransferBeep parameter
Cue selects the CueBeep parameter
ZeroizeBad selects the ZeroizeBadBeep parameter
HoldingMemoryTransfer selects the HoldingMemoryTransferBeep parameter
TransmitERF selects the TransmitERFBeep parameter
NetIDChange selects the Netl DChangeBeep parameter
BitFall selects the BitFailBeep parameter
ActiveFail selects the ActiveFailBeep parameter
CTTrafficBeep

This parameter specifies the CT Traffic Beep tone profile and has the following
structure, which is inherited from the API 10 Building Block:

struct BegpType {
unsigned short frequencylnHz;
unsigned short durationlnms;
short beepL evelndB;

H
COMSECLoadBeep

This parameter specifies the COMSEC Load Beep tone profile and has the same
structure as the CT TrafficBeep parameter.

FillZeroizeGoodBeep

39

JTRS Input / Output API
rev 1.0

This parameter specifies the Fill Zeroize Good Begp tone profile and has the same
structure as the CT TrafficBeep parameter.
FHLoadTransfer Beep

This parameter specifies the FH Load Transfer Beep tone profile and has the same
structure as the CT TrafficBeep parameter.

CueBeep

This parameter specifies the Cue Beep tone profile and has the same structure as
the CT TrafficBeep parameter.

ZeroizeBadBeep

This parameter specifies the Zeroize Bad Beep tone profile and has the same
structure as the CT TrafficBeep parameter.

HoldingMemoryTransfer Beep

This parameter specifies the Holding Memory Transfer Beep tone profile and has
the same structure as the CT TrafficBeep parameter.

TransmitERFBeep

This parameter specifies the Transmit ERF Beep tone profile and has the same
structure as the CT TrafficBeep parameter.

Netl DChangeBeep

This parameter specifies the Net ID Change Beep tone profile and has the same
structure as the CT TrafficBeep parameter.

BitFailBeep

This parameter specifies the Bit Fall Beep tone profile and has the same structure
asthe CT TrafficBeep parameter.

ActiveFailBeep

This parameter specifies the ActiveFail Begp tone profile and has the same
structure as the CT TrafficBeep parameter.

41353 State.
Any current operational state.
4.1.3.54 New State.

The audio device outputs the selected beep frequency and audio level to the operator’s audio
device for the duration defined during the CreateBeep operation.

41355 Response.
1O_BB::IdType

Upon creation of a Beep profile, the device will return anon-zero ID that is unique with
respect to al beep and tone profile IDs.

40

JTRS Input / Output API
rev 1.0

4.1.35.6 Originator.
Waveform application.
4.1.35.7 ErrorgExceptions.
|O_BB::1dType
A value of zero isreturned if the beep profile could not be created.

4136 sendBeep Service.

sendBeep provides a Service User the ability to command a Service Provider to generate and
output to a handset or speaker a Beep using a predefined Beep profile. Beepld is used specify
the Beep Profile. One and only one Beep is generated/output per invocation of sendBeep.

4.1.3.6.1 Synopsis.
oneway void sendBeep (in |O_BB::1dType Beepld);

4.1.3.6.2 Paameters.
Beepld

identifies the profile of the Beep that invocation of SendBeep will cause the Service
Provider to generate and output to the operator’ s audio device.

41363 State.

Any operational state.

4.1.3.64 New State.

The Audio device begins generation of the selected beep, if not already started.
41365 Response.

None.

4.1.3.6.6 Originator.

Waveform application.

4.1.3.6.7 ErrorgExceptions.

None.

41

JTRS Input / Output API
rev 1.0

414 I/O Signals.

4141 SignaRTS Service.

This signaling operation provides the ability to signal atransmit request (PTT active) to transmit
-data Service Providers.

41411 Synopss.
void signaRTS(in boolean RTS)
41412 Parameters.
RTS= True
signals PTT is active, indicating the operator intends to transmit traffic.
RTS= False
signals PTT isinactive.
41413 State.
Any operational state.
41414 New State.
None.
41415 Response.
None.
4.1.4.1.6 Originator.
1/O device.
4.1.4.1.7 Errors/Exceptions.
None.

42

JTRS Input / Output API
rev 1.0

4.2 REAL-TIME PRIMITIVES.

These primitives support the "A" interface shown in Figure 1-1 and provide separate real-time
interfaces for an 1/0 Downstream Provider and for an 1/0 Upstream User.

421 Queue Services.

These are common services provided by both the 1/0 Downstream Provider Queue and the I/0O
Upstream User Queue.
4211 spaceAvailable.

This operation provides the Service User the ability to poll the Service Provider to determine the
amount of queue space available, in ‘elements’, for a given queue priority. When the operation
isinvoked, the server will respond with the amount of available space on the queue. Examples
of ‘elements’ are Octets, Audio Samples, digital waveform data words, etc.

4.2.1.1.1 Synopss.
unsigned short spaceAvailable (in octet priorityQueuel D);

4.21.1.2 Parameters.
priorityQueuel D

This parameter indicates the PriorityQueue for which the Service Provider is required to
return the amount of available queue space measured in ‘elements. The number of
priority queuesis set up via SetNumOfPriorityQueues primitive. 1f
SetNumOfPriorityQueues has not been called, the default number of priority queuesis 1.

42113 Sate.
Any state.

42114 New State.
None.

42115 Response.
gpaceAvailable

This is the amount of available space, in ‘elements, for the given priority queue ID.
Examples of ‘elements are Octets, Audio Samples, digital waveform data words, etc.

4.2.1.1.6 Originator.
Service User.
4.2.1.1.7 ErrorgExceptions.
spaceAvailable
The Service Provider returns avalue of —1 when the priority queue ID is not defined.

4.2.1.2 enableFlowControlSignals.

This operation is used to activate and deactivate the ‘water-mark’ signals. The default isfalse
(signals will not be generated).

43

JTRS Input / Output API
rev 1.0

42121 Synopss.
oneway void enableFlowControl Signals (in boolean enable);

42122 Parameters.
enable= TRUE

The Service Provider will signal the Lowwater and Highwater queue conditions, to the
Service User, when the Lowwater mark has been reached (queue near empty).

enable =FALSE

The Service Provider will not generate signals to indicate the Lowwater and Highwater
gueue conditions. It isup to the Service User to poll the Service Provider to insure the
Service Provider will not be starved or the queue will not overflow. The instantiating
API should define behavior upon starvation or queue overflow.

42123 State.

NO_PROVIDER WATERMARK_SIGNALSor PROVIDER WATERMARK_SIGNALS
42124 New State.

enable = TRUE: PROVIDER_ WATERMARK_SIGNALS

enable= FALSE: NO_PROVIDER WATERMARK_SIGNALS

42125 Response.

None.

4.2.1.2.6 Originator.
Service User.

4.2.1.2.7 ErrorgExceptions.
None.

4213 enableEmptySignal.

This operation is used to activate and deactivate the ‘empty’ signal. The signal will not be
generated when set to enable is False.

42131 Synopss.
oneway void enableEmptySignal (in boolean enable);

42132 Parameters.
enable= TRUE

The Service Provider will generate a signal to the Service User when the all queues are
empty.
enable = FALSE

The Service Provider will not generate a signal to indicate al queues are empty. Itisup
to the Service User to poll the Service Provider to insure the Service Provider’s queue

JTRS Input / Output API
rev 1.0

will not be starved. The instantiating waveform API should define behavior upon
starvation.

42133 State.

NO_PROVIDER_EMPTY_SIGNAL or PROVIDER_EMPTY_SIGNAL
42134 New State.

enable = TRUE PROVIDER _EMPTY_SIGNAL
enable= FALSE NO_PROVIDER_EMPTY_SIGNAL
42135 Response.

None.

4.2.1.3.6 Originator.

Service User.

4.2.1.3.7 Errors/Exceptions.

None.

4214 setNumOfPriorityQueues.

This operation is used by the Service User to inform the Service Provider how many priority
gueues to provide.

42141 Synopss.
oneway void setNumOfPriorityQueues (in octet numOfPriorities);

42142 Paameters.
numOfPriorites

Specifies the number of priority queues the Service Provider must provide. If thevalueis
set to 10, the range of the pushPacket priority parameter is 0-9, with 9 being the highest
priority. Messages with a priority of 9 will be processed first by the Service Provider.

42143 Sate.

Any state.

42144 New State.

Same state.

42145 Response.

None.

4.21.4.6 Originator.
Service User.

4.2.1.4.7 ErrorgExceptions.
None.

45

JTRS Input / Output API
rev 1.0

4215 getMaxPaylLoadSize.

This attribute allows a Service User to interrogate the maximum payload size, in ‘elements’,
provided by a Service Provider. Examples of ‘elements’ are Octets, Audio Samples, digital
waveform data-words, etc.

42151 Synopss.

readonly attribute unsigned short maxPayloadSize;

maxPayL oadSize is an attribute, whose "Set" and "Get" functions are auto-generated.
42152 Parameters.

None.

42153 State.
Any stete.

42154 New State.
Same state.

42155 Response.
maxPayloadS ze

Specifies the maximum number of traffic ‘elements allowed per pushPacket call. Itis
established by the Packet Service Provider. Examples of ‘elements are Octets, Audio
Samples, digital waveform data-words, etc.

4.2.1.5.6 Originator.

Service User.
4.2.1.5.7 ErrorgExceptions.
None.

4216 getMinPayLoadSize.

This attribute allows a Service User to interrogate the minimum payload size, in ‘elements’,
provided by a Service Provider. Examples of ‘elements’ are Octets, Audio Samples, digital
waveform data-words, etc.

4.2.16.1 Synopss.

readonly attribute unsigned short minPayloadSize;

minPayLoadSize is an attribute, whose "Set" and "Get" functions are auto-generated.
4.216.2 Parameters.

None.

42163 Sate.

Any stete.

46

JTRS Input / Output API
rev 1.0

42164 New State.
Same state.

42165 Response.
minPayloadS ze

Specifies the minimum number of traffic ‘elements allowed per pushPacket call. Itis
established by the Packet Service Provider. Examples of ‘elements’ are Octets, Audio
Samples, digital waveform data-words, etc.

4.2.1.6.6 Originator.

Service User
4.2.1.6.7 ErrordExceptions.
None.

4217 pushPacket.

pushPacket provides the capability to push data packets from a Service User to a Service
Provider or from a Service Provider to a Service User. A packet is made up of two parts, control
and payload. The payload is queued according to the priority and is processed according to the
information specified in control parameter.
42171 Synopss.
oneway void pushPacket (

in octet priority,

in AudioControl Type control,

in CF::UlongSequence payload

421.7.2 Parameters.

priority:
conveys to the Service Provider the number of the priority queue where the packet is to
be queued. (See setNumOfPriorityQueues)

control:
conveys the Control Type defined by the instantiating waveform API.

The control parameter has the following structures, which depend on the direction datais
being pushed, downstream (towards the antenna) or upstream:

struct AudioControl Type {
boolean endOf Stream;
unsigned short streamiD;

octet sequenceNum;

b

47

JTRS Input / Output API
rev 1.0

endOfStream
Indicates the last symbol in this packet is the end of this stream sequence.
streamlD

Associates a packet with a particular packet stream sequence. A stream
sequence might include all packets received during a single reception or
transmitted during a single transmission.

sequenceNum

Conveys the sequence number of a packet within a stream of packets
having the same stream ID.

Indicates Start of Stream when the value of sequenceNum is zero (e.g.,
first packet in having this stream ID). The waveform application is
responsible for setting this value to zero.

attributel
This parameter is defined by the Waveform API.
payload:

This parameter is of type CF:: UlongSequence and it contains receive or transmit traffic
data

42173 Sate.

Any stete.

42174 New State.
Same state.

42175 Response.
None.

4.2.1.7.6 Originator.
Service User

4.2.1.7.7 ErrorgExceptions.
None.

4.2.2 Packet Signals Services.
These services provide flow control for the pushPacket operation.

4221 signaHighWatermark.

This service isacall back event to the Service User indicating a queue has reached its high
watermark. If priority or multiple queues are being supported, the priorityQueuel D indicates
which queue has reached its high watermark.

48

JTRS Input / Output API
rev 1.0

42211 Synopss.
oneway void signalHighWatermark (in octet priorityQueuel D);
42212 Paameters.
priorityQueuel D
indicates the queue priority which has reached its high water mark. (See

setNumOfPriorityQueues).
42213 State.
Any state.
42214 New State.
Same state.
42215 Response
None.
4.2.2.1.6 Originator.
Service Provider.
42217 Errors/Exceptions.
None.

4222 signalLowWatermark.

This service is acall back event to the Service User indicating a queue has reached its low
watermark. If priority or multiple queues are being supported, the priorityQueuel D indicates
which queue has reached its low watermark.

42221 Synopss.

oneway void signalLowWaterMark (in octet priorityQueuel D);
42222 Parameters.

priorityQueuel D

indicates the queue priority which has reached its low water mark. (See
setNumOf PriorityQueues).

42223 Stae.
Any stete.

42224 New State.
Same stete.

42225 Response.
None.

49

JTRS Input / Output API
rev 1.0

4.2.2.2.6 Originator.

Service Provider.
4.2.2.2.7 ErrorgExceptions.
None.

4223 sgnaEmpty.

This serviceis a call back event to the Service User indicating the queue is empty. If priority or
multiple queues are being supported, it indicates all queues are empty.

42231 Synopss.

oneway void signa Empty ();
42232 Parameters.
None.

42233 State.

Any state.

42234 New State.
Same state.

42235 Response.

None.

4.2.2.3.6 Originator.
Service Provider.

4.2.2.3.7 Errors/Exceptions.
None.

4.2.3 sgnalError Service.

This serviceis acall back to the Service User indicating the Service Provider has detected an
error in a pushPacket payload.

42311 Synopss.

void signalError(in IOError_T errorDetails);
42312 Parameters.

None.

42313 State.

Any operational state.

4.2.3.1.4 New State.

None.

50

JTRS Input / Output API
rev 1.0
42315 Response.
errorDetails
conveys the following pushPacket payload error details to the Service User.

Error_InvalidData indicates improperly formatted data
Error_BadData indicates data exceeds the expected vaue

Error_CRC indicates data failed a Cyclic Redundancy Code check
4.2.3.1.6 Originator.
1/O device.
4.2.3.1.7 ErrorgExceptions.
None.

51

JTRS Input / Output API
rev 1.0

5 ALLOWABLE SEQUENCE OF SERVICE PRIMITIVES.

Attributes: Attributes may be set and fetched in any order. Thereis no order of precedence. The
parameterized radio parameters should not be set unless all defined values have been initialized.

Tones and Beegps. Tones and beeps must be created before they can be started or sent. Starting
an already started tone will have no effect on the audio device.

Sending an aready active beep will extend the remaining beep duration by one complete beep
duration.

Stopping aready stopped tones will have no effect.

The sequence of operations used to control upstream flow of audio samplesis defined Figure 3.4
Sequence Diagram, Voice.

6 PRECEDENCE OF SERVICE PRIMITIVES.

Where the precedence of service primitives are critical to proper operation, they are addressed in
sections 3 and 4.

7 SERVICE USER GUIDELINES.

Auto-generated "get" and "set" operations are used to set and read attributes where they are
defined in SCA Building Blocks. Otherwise, the use of attributes and their default "get"/" set"
operations is avoided, as they do not support user-defined exceptions.

8 SERVICE PROVIDER-SPECIFIC INFORMATION.

Where Service Provider-specific information is critical to proper operation, it is addressed in
sections 3 and 4.

52

JTRS Input / Output API
rev 1.0

9 IDL.
IDL is provide for the SINCGARS I/O API and the Audio API Building Block

9.1 1/O API.
The following IDL file describes the 1/0 API.

/1 Source file: c:/programfiles/devstudi o/vc/atl/include/lO.idl

#i f ndef __1 O_DEFI NED

#define __| O DEFI NED

/* Cmdentification
X% Y0 Y% YN */

/* This package provides the main framework for all objects within the radio.
*/

nmodul e CF {

/* This type is a CORBA |IDL struct type which can be used to hold any
CORBA basic type or static IDL type. */

struct DataType {

/* The id attribute indicates the kind of value and type (e.qg.
frequency, preset, etc.). The id can be an UUI D string, an integer string,
or a nane identifier. */

string id;

[* The value attribute can be any static IDL type or CORBA basic
type. */

}s

any val ue;

/* The Properties is a CORBA I DL unbounded sequence of DataType(s),
whi ch can be used in defining a sequence of nane and value pairs. The
rel ati onships for Propertiies are shown in the Properties Rel ationships
figure. */

t ypedef sequence <Dat aType> Properties;

/* This type is a CORBA unbounded sequence of octets. */

typedef sequence <octet> Cctet Sequence;

/* This type defines a sequence of strings */

typedef sequence <string> StringSequence;

/* The LifeCycle interface defines the generic operations for
initializing or releasing an instantiated conponent specific data and/or

processing el enents. */

interface LifeCycle {

53

JTRS Input / Output API
rev 1.0

/* This exception indicates an error occurred during conponent
initialization. The nessages provides additional information describing the
reason why the error occurred. */

exception InitializeError {
StringSequence error Messages;

}s

/* This exception indicates an error occurred during conponent
rel easeObj ect. The nmessages provides additional information describing the
reason why the errors occurred. */

exception Rel easeError {
StringSequence error Messages;

}s

/* The purpose of the initialize operation is to provide a
mechanismto set an object to an known initial state. (For exanple, data
structures may be set to initial values, nenory may be all ocated, hardware
conmponents may be configured to some state, etc.).

The initialize operation raises an exception if initialized nore than once
for a conponent. Initialization behavior is inplenentation dependent.

This operation raises the InitializeError when an initialization error
occurs.
@ oseui d 39EB58810202 */
void initialize ()
raises (lnitializeError);

/* The purpose of the rel easeObject operation is to provide a
means by which an instantiated conponent nmay be torn down. The rel easeObject
operation releases itself fromthe CORBA ORB

The rel easeObj ect operation releases all internal nenory allocated by the
conmponent during the life of the conponent.

This operation raises a Rel easeError when a rel ease error occurs.
@ oseui d 39EB58810203 */
voi d rel ease(hject ()
rai ses (Rel easeError);

}s

/* The Testabl eObj ect interface defines operations that can be used to
test object inplenmentations. */

i nterface Testabl elbj ect {
/* This exception indicates the test is unknown by the conponent.
*/

exception UnknownTest {

b

/* The runTest operation allows conponents to be "blackbox"
tested. This allows Built-In Test (BIT) to be inplenented as well as

JTRS Input / Output API
rev 1.0

provides a nean to isolate faults (both software and hardware) within the
system

The runTest operation uses the testNum argunment to specify the

i mpl enentation-specific test to be run. Tests to be inplemented by a
conponent are conponent -dependent and are specified in the conponent's
software profile.

An UnknownTest exception shall be raised when no such test is known by the
conponent .
@ oseui d 39EB5881024A */
| ong runTest (
in unsigned | ong testNum

)

rai ses (UnknownTest);

b

/* The PropertySet interface defines configure and query operations to
access conponent properties/attributes. */

interface PropertySet {
/* This exception indicates the configuration of a conponent has
failed (no configuration at all was done). The nessage provides additiona
i nformati on describing the reason why the error occurred. The invalid
properties returned indicates the properties that were invalid. */

exception InvalidConfiguration {
Properties invalidProperties;
string nsg;

b
/* This exception indicates the configuration of a conponent was
partially successful. The invalid properties returned indicates the

properties that were invalid. */

exception Partial Configuration {
Properties invalidProperties;

b

/* This exception indicates a set of properties unknown by the
conponent. */

exception UnknownProperties {
Properties invalidProperties;

b

/* The purpose of this operation is to allowid/value pair
configuration properties to be assigned to conponents inplenenting this
interface. @

The configure operation shall assign values to the properties as indicated in

the configProperties argunment. An conponent's SPD profile indicates the
valid configuration val ues.

55

JTRS Input / Output API
rev 1.0

Thi s operation raises InvalidConfiguration exception when a configuration
error occurs preventing any property configuration on the conponent.

This operation raises Partial Configuration excepti on when sone configuration
properties were successful and some configuration properties were not
successful .
@ oseui d 39EB5881024F */
voi d configure (
in Properties configProperties

)

rai ses (lnvalidConfiguration, Partial Configuration);

/* The purpose of this operation is to allow a conponent to be
queried to retrieve its properties.

If the configProperties are zero size then, the query operation returns al
conmponent properties. |If the configProperties are not zero size, then the
query operation returns only those id/value pairs specified in the
configProperties. An conponent's SPD profile indicates the valid query

types.

Thi s operation raises the UnknownProperties excepti on when one or nore
properti es being requested are not known by the conponent.
@ oseui d 39EB58810251 */
voi d query (
i nout Properties configProperties

)

rai ses (UnknownProperties);
1

/* The Resource interface provides a common APl for the control and
configuration of a software conponent.

The Resource interface inherits fromthe LifeCycle, PropertySet, and
Test abl eObj ect interfaces.

The inherited LifeCycle, PropertySet, and Testabl eObject interface
operations are documented in their respective sections of this document.

The CF Resource interface nmay al so be inherited by other application
interfaces as described in the Software Profile's Software Conponent
Descriptor (SCD) file. */

interface Resource : LifeCycle, Testabl eObject, PropertySet {
/* This exception is raised if an undefined port is requested.
*/

exception UnknownPort {

b

/* This exception indicates a Start error has occurred for the
Resource. An error nessage is given explainng the start error. */

exception StartError {
string nseg;
b

56

JTRS Input / Output API
rev 1.0

/* This exception indicates a Stop error has occurred for the
Resource. An error nessage is given explainng the stop error. */

exception StopError {
string nseg;
b

/* The start operation enables operations for the Resource.
@ oseui d 39EB58810163 */
void start ()

raises (StartError);

/* The start operation disables operations for the Resource.
@ oseui d 39EB58810164 */
void stop ()

rai ses (StopError);

/* The getPort operation provides a nmechanismto obtain a
speci fic consuner or producer Port. A Resource may contain zero to nmany
consuner and producer port conponents. The exact nunber is specified in the
conponent's Software Profile SPD s SCD. These Ports can be either push or
pull types. Miltiple input and/or output ports provide flexibility for
Applications and Resources that nust nmanage varying priority levels and
categories of incom ng and outgoi ng nmessages, provide multi-threaded nessage
handl i ng, or other special nmessage processing.

The get Port operations returns the object reference to the named port as
stated in the Resource's SCD

The get Port operation raises an UnknownPort exception if the port nane is
i nvalid.
@ oseui d 39EB58810165 */
bj ect getPort (
in string nane

)

rai ses (UnknownPort);

b
nodul e 1 O BB {
t ypedef unsigned short |dType;

struct BeepType {
unsi gned short durationlnis;
unsi gned short frequencyl nHz;
short beepLevel | ndB

}s

interface |10Signhals {
/*
@ oseui d 3A1A85D0024D */
voi d signal RTS (
i n bool ean RTS

57

JTRS Input / Output API
rev 1.0

b

nodul e Port Types {
/* This type is a CORBA unbounded sequence of unsigned |ongs. */
typedef sequence <unsigned | ong> U ongSequence;
/* This type is a CORBA unbounded sequence of unsigned shorts. */
typedef sequence <unsigned short> Ushort Sequence;

i

nodul e Packet BB {

i nterface Packet Signals {

/* This operation is a call event back to the Packet APl client
i ndicating that a queue has reach the high watermark. If priority or
mul ti pl e queues are being supported then the priorityQueuel D indicates which
gueue has reached the hi gh waternmark

@ oseui d 39EF41B3009D */

oneway voi d signal H ghWat er mark (

in octet priorityQueuelD

)
/* This operation is a call event back to the Packet APl client
i ndi cating that the queue has reach the | ow watermark. If priority or

nmul ti pl e queues are being supported then this indicates that the sumtotal of
all the queues has reached the | ow wat er marKk.
@ oseui d 39EF41B3009F */
oneway voi d signal Lowat er Mark (
in octet priorityQueuelD

)
/* This operation is a call event back to the Packet APl client
i ndi cating that the queue has enpti ed. If priority or multiple queues are

bei ng supported then this indicates that the sumtotal of all the queues has
reached zero.

@ oseui d 39EF41B300A1 */

oneway voi d signal Enmpty ();

b
nodul e 10 {
nodul e Audi o {

struct CVSDPar anet er Type {
unsi gned short DataSanpl esi ze;

58

JTRS Input / Output API
rev 1.0

bool ean enabl e;

b

struct Audi oConfigurationType {
CVSDPar anet er Type CVSDPar anet er ;
string Version;
string Audi oMbdul eNane;
unsi gned short Audi oChannel Nunber ;
bool ean LPCl0Enabl e;

1
/* Used to configure the 10O device */

i nterface Audi ol OConfiguration {
attri bute Audi oConfigurati onType configuration;

}s

struct Audi ol OCont r ol Type {
unsi gned short SideToneGai nl ndB;
unsi gned short AGCAttackTi nmel nnt;
unsi gned short AGCRel easeTi nel nnt;
unsi gned short AGCDynam cRangel ndB;
bool ean Audi oQut put Enabl ed;
bool ean Si det oneEnabl ed;
short CQut put Gai nl ndB;
short M crophoneGai nl ndB;

b
enum TrafficType {
SCPT, /* Gen_Plain_Text_Mde_ Mg #32 */
FHPT,
FHCT,
SCCT /* Gen_Ci pher_ Text_Mode_Msg #31 */
1

/* Controls the operational parameters associated with a specific
I/ O device. */

i nterface Audi ol OControl {
attri bute Audi ol OControl Type paraneters;
attri bute bool ean txActive;
attri bute bool ean rxActive;

/*
@ oseui d 3A1A8BB20360 */
voi d enabl eRTS_CTS (

i n bool ean Enabl e

)

/*
@ oseui d 3A1A8BB2036B */
voi d setCTS (

i n bool ean CTS

)
/*

59

JTRS Input / Output API
rev 1.0

@ oseui d 3A240E4B0179 */

void txBegin (
in TrafficType TxTraffic
);

/*

@ oseui d 3A240E7DO1FD */

voi d rxBegin (
in TrafficType RxTraffic
);

b

enum Fl owConfi gurati onType {
HWFl owCont r ol ,
XonXof f Cont rol ,
None

b

struct SyncDat aType {
unsi gned short dat aRat el nHz;
b

struct AsyncDat aType {
unsi gned short dataRat el nHz;
unsi gned short Nunber Of St opBits;
bool ean ParityBit;
unsi gned short Nunmber Of Dat aBi ts;
unsi gned short NunmberOf StartBits;

b

struct Datal OControl Type {
bool ean DDMCActi ve;
bool ean ADMCActi ve;

b

/* The 10 control Service Group defines the interface for
controlling the operational paraneters associated with Audio and Data
Devi ces. */

i nterface Datal OControl {
attri bute Datal OControl Type paraneters;
attri bute bool ean txActive;
attri bute bool ean rxActive;

/*
@ oseui d 3A242182015E */
voi d enabl eRTS_CTS (

i n bool ean Enabl e

)

/*
@ oseui d 3A2421820172 */
voi d setCTS (

i n bool ean CTS

)

60

JTRS Input / Output API
rev 1.0

/*

@ oseui d 3A269D1E0190 */

void txBegin (
in TrafficType TxTraffic
)

/*

@ oseui d 3A269D2402B1 */

void rxBegin (
in TrafficType RxTraffic
);

s

struct Al arnmlype {
unsi gned short Frequencyl nHz;
unsi gned short OnTi nel nnS;
unsi gned short O f Ti mel nnS;
short ToneLevel | ndB;

b

struct Muilti ToneAl arniType {
unsi gned short nunber Of Tones;
Al arnifype Tonel;
Al ar niType Tone2;
Al ar mType Tones3;
unsi gned short SeqRepeat eTi mel nnt;

b

enum | Cerror Type {
Errorlnval i dDat a,
Err or BadDat a,

Error CRC
1
interface |1 OErrorSignal {
/*
@ oseui d 3A2506CA032A */
voi d signal Error (
in |OErrorType errorDetails
)
1

struct Audi oControl Type {
bool ean endOf Stream
unsi gned short stream D,
octet sequenceNum

}s
/* Mac octet Packet */

interface OctetPacket {
attri bute unsigned short m nPayl oadSi ze;

61

JTRS Input / Output API
rev 1.0

/* The maxPacket Size is a read only attribute set by the
Packet Server and the get operation reports back the maxi num nunber of
traffic units allowed in one pushPacket call. */

attri bute unsigned short nmaxPayl oadSi ze;

/* This operation is used to push Client data to the Server
with a Control element and a Payl oad el ement.
@ oseui d 39F998E602BA */
voi d pushPacket (
in octet priority,
i n Audi oControl Type control,
in CF::CctetSequence payl oad

)

/* The operation returns the space available in the Servers
queue(s) in ternms of the inplenenters defined Traffic Units.
@ oseui d 39F998E602E3 */
short spaceAvail abl e (
in octet priorityQueuelD
);

/* This operation allows the client to turn the High
Wat ermark Signal ON and OFF
@ oseui d 39F998E602EC */
voi d enabl eFl owControl Si ghal s (
i n bool ean enabl e

)

/* This operation allows the client to turn theEnpty Signa
ON and OFF.
@ oseui d 39F998E602EE */
voi d enabl eEnptySi gnal (
i n bool ean enabl e

)

/*

@ oseui d 39F998E602F7 */

voi d set NunOf PriorityQueues (
in octet nunOfPriorities

)
1
/* MAC unsi gned | ong packet */
i nterface U ongPacket {
attribute unsigned short m nPayl oadSi ze;
/* The maxPacketSize is a read only attribute set by the
Packet Server and the get operation reports back the maxi num nunber of
traffic units allowed in one pushPacket call. */

attri bute unsigned short maxPayl oadSi ze;

/* This operation is used to push Client data to the Server
with a Control element and a Payl oad el ement.

62

JTRS Input / Output API
rev 1.0

@ oseui d 39F99B57021A */
voi d pushPacket (
in octet priority,
i n Audi oControl Type control,
in PortTypes:: U ongSequence payl oad

)

/* The operation returns the space available in the Servers
queue(s) in ternms of the inplenenters defined Traffic Units.
@ oseui d 39F99B57022D */
short spaceAvail abl e (
in octet priorityQueuel D

)

/* This operation allows the client to turn the High
Wat ermark Si gnal ON and OFF.
@ oseui d 39F99B570237 */
voi d enabl eFl owControl Si ghal s (
i n bool ean enabl e

)

/* This operation allows the client to turn theEnpty Signal
ON and OFF.
@ oseui d 39F99B570241 */
voi d enabl eEnpt ySi gnal (
i n bool ean enabl e

)

/*

@ oseui d 39F99B570243 */

voi d set NunOf PriorityQueues (
in octet nunOfPriorities

)
i
/* MAC unsigned short Packet */

i nterface Ushort Packet {
attri bute unsigned short m nPayl oadSi ze;
/* The maxPacket Size is a read only attribute set by the
Packet Server and the get operation reports back the maxi num nunber of
traffic units allowed in one pushPacket call. */

attri bute unsigned short maxPayl oadSi ze;

/* This operation is used to push Client data to the Server
with a Control elenent and a Payl oad el enent.
@ oseui d 39F99C500357 */
voi d pushPacket (
in octet priority,
i n Audi oControl Type control,
in PortTypes:: Ushort Sequence payl oad
);

63

JTRS Input / Output API
rev 1.0

/* The operation returns the space available in the Servers
queue(s) in terms of the inplenenters defined Traffic Units.
@ oseui d 39F99C500363 */
short spaceAvail abl e (
in octet priorityQueuelD
)

/* This operation allows the client to turn the High
Wat er mark Signal ON and OFF.
@ oseui d 39F99C50036C */
voi d enabl eFl owControl Si ghal s (
i n bool ean enabl e

)

/* This operation allows the client to turn theEnpty Signal
ON and OFF.

@ oseui d 39F99C500375 */
voi d enabl eEnpt ySi gnal (
i n bool ean enabl e

)

/-k

@ oseui d 39F99C500377 */

voi d set NunOf PriorityQueues (
in octet numOfPriorities

)
b

interface User : U ongPacket, PacketBB:: Packet Signals {
b

interface Provider : U ongPacket, PacketBB:: PacketSi gnal s,
| CErrorSignal {

b

enum Dat aDi scri m nat or {
Synchr onousDat a,
Asynchr onousDat a
b

uni on Dat aConfigurati onType switch(DatabDi scrimnator) {
case SynchronousDat a: SyncDat aType syncDat aPort ;
case AsynchronousDat a: AsyncDat aType asyncDat aPort;
b

[* Data IO Configuration */

i nterface Datal OConfiguration {
attri bute DataConfigurationType configuration;

/*

@ oseui d 3A241CFDO02E */

voi d setFl owConfig (
i n Fl owConfigurationType flowContr ol
)

b

JTRS Input / Output API
rev 1.0

enum Al armDi scri m nator {

b

uni on

CT,

PTOverri de,

Dat al nHol di ngMenory,
Packet Busy,

PTMbde,

COMSECPari ty

ToneProfil eType switch(Al arnDi scri m nator) {
case CT: Alarnflype CTAlarm

case PTOverride: Al arnilype PTOverri deAl arm
case Dat al nHol di ngMenory: Al arnilype

Dat al nHol di ngMenor yAl ar m

b

case Packet Busy: Al arnmlype Packet BusyAl arm
case PThWbde: Multi ToneAl arnifype PTModeAl ar m
case COVSBECParity: Al arniType COVSECParityAl arm

enum BeepDi scrim nator {

uni on

CTTraffic,

COMSECLoad,

Fill Zer oi zedGood,
FHLoadTr ansfer,

Cue,

Zer oi zeBad,

Hol di ngMenor yTr ansf er,
Transm t ERF,

Net | DChange,

BitFail,

Act i veFai |

BeepProfil eType switch(BeepDi scrimnator) {

case CTTraffic: 10 _BB::BeepType CTITrafficBeep;
case COVSECLoad: | O BB:: BeepType COMSECLoadBeep;
case Fill Zeroi zedGood: 1O _BB:: BeepType

Fi || Zer oi zedGoodBeep;

case FHLoadTransfer: |10 _BB:: BeepType FHLoadTr ansf er Beep;
case Cue: |10 _BB::BeepType CueBeep;

case Zeroi zeBad: | 0O _BB:: BeepType Zeroi zeBadBeep;

case Hol di ngMenoryTransfer: |1 O _BB:: BeepType

Hol di ngMenor yTr ansf er Beep;

}s

case Transnmit ERF: 1O _BB:: BeepType Transmn t ERFBeep;
case Net | DChange: |10 BB:: BeepType Net| DChangeBeep;
case BitFail: 10 _BB::BeepType BitFail Beep;

case ActiveFail: 10 _BB:: BeepType ActiveFail Beep;

/* Provides the tone and beep sevice to the operator */

i nterface Audi bl e_Al ertsAndAl arnms {

attri bute bool ean txActive;

65

JTRS Input / Output API
rev 1.0

attri bute bool ean rxActive;

/*
@ oseui d 3A1A8C6401F4 */
| O BB::1dType createTone (
in ToneProfil eType ToneProfile

)
/*
@ oseui d 3A1A8C6401FE */

void startTone (
in 10BB::1dType Toneld

)

/*
@ oseui d 3A1A8C640209 */
voi d stopTone (
in 10OBB::1dType Toneld

)

/*
@ oseui d 3A1A8C640213 */
voi d stopAll Tones ();

/*
@ oseui d 3A1A8C640230 */
| O BB::1dType createBeep (
i n BeepProfil eType Beep

)

/-k

@ oseui d 3A1A8C640244 */

voi d sendBeep (
in |OBB::1dType Beepld
)

b

interface Controller : CF:.:Resource, 10BB::1Q0Signals,
Audi bl e_Al ert sAndAl arns, Audi ol OConfi gurati on, Audi ol OControl {

}s

66

JTRS Input / Output API
rev 1.0

9.2 API BUILDING BLOCK.

The following IDL file describes the API building blocks.
//Source file: H:/JTRS/SY SITRSapi/rose models/I TTBBIDL/APIBB.id|

#fndef _ APIBB_DEFINED
#define_ APIBB_DEFINED

/* Cmldentification
%X % %Q% %Z% %W% */

module APIBB {

interface Channel ErrorControl {
/*
@roseuid 39EB177F0102 */
void channelErrorControl (
in boolean ErrorControl

);
h

interface DropCapture {
/*
@roseuid 39C643F203D4 */
boolean dropCapture ();

h

interface RecelveTermination {
/*
@roseuid 39D0073C0171 */
boolean dropCapture ();

/*
@roseuid 39DOADCCO0174 */
boolean abortReceive ();

};

interface Physical M anagement {
readonly attribute unsigned short maxTU;
readonly attribute unsigned short minTU;
|3

interface Transmitlnhibit {
/*
@roseuid 390D0B62B0021 */
boolean inhibitTransmit (
in boolean Inhibit

67

h

JTRS Input / Output API
rev 1.0

interface PacketSignals {

1

[* This operation is a call event back to the PacketAPI client indicating that a queue has
reach the high watermark. If priority or multiple queues are being supported then the
priorityQueuel D indicates which queue has reached the high watermark.
@roseuid 38F3442F01B8 */
oneway void signaHighWatermark (

in octet priorityQueuel D

);

[* This operation is a cal event back to the PacketAPI client indicating that the queue has
reach the low watermark. If priority or multiple queues are being supported then this
indicates that the sum total of all the queues has reached the low watermark.
@roseuid 38F3446F025A */
oneway void signalLowWaterMark (

in octet priorityQueuel D

[* This operation isacall event back to the PacketAPI client indicating that the queue has
emptied. If priority or multiple queues are being supported then this indicates that the
sum total of al the queues has reached zero.

@roseuid 38FE26CFO2FA */

oneway void signa Empty ();

interface |OSignals {

1

/*
@roseuid 39E4A192016E */
oneway void SignaRTS (

in boolean RTS

);

struct BeepType {

};

unsigned short frequencylnHz;
unsigned short durationinMs;
short BeepLevelIndB;

enum ErrType {

};

PktUsageErr,
PktErrNo

typedef unsigned short [dType;

68

#endif

JTRS Input / Output API
rev 1.0

[* Identify this data stream for acknowledgement processing, cancelation of transmission,etc. */

struct StreamControl Type {

/* Indicates that the last symbol of this hop isan end of stream. */
boolean endOf Stream;
unsigned short streamliD;
* Sequence number of the hop within the stream sequence. The waveform application
setsthis value to zero at every occurrence of a start of stream. If valueis set to zero it
indicates beginning of stream. */
octet sequenceNum;
b

struct TimeType {
unsigned long seconds,
unsigned long nanoSec;

}s

69

JTRS Input / Output API
rev 1.0

10 UML.
UML class and component diagrams are shown in the following figures.

10.1 CONTROLLER DIAGRAM.

<<Interface>>
<<Interface>> Audible_AlertsAndAlarms

AudiolOConfiguration

<<Interface>>
IOSignals
(from 10_BB)

<<Interface>>
<<Interface>> Resource
AudiolOControl (from CF)

<<Interface>>
Controller

Figure10-1. UML Controller Relationships

70

10.2 USER DIAGRAM.

<<Interface>>
UlongPacket

<<Interface>>
PacketSignals
(from PacketBB)

A\

<<Interface>>
User

JTRS Input / Output API

Figure 10-2. UML User, Data Packet Relationships

10.3 PROVIDER DIAGRAM.

<<Interface>>
IOErrorSignal

<<Interface>>
UlongPacket

A

<<Interface>>
Provider

<<Interface>>
PacketSignals

(from PacketBB)

Figure 10-3. UML Provider, Data Packet Relationships

71

rev 1.0

JTRS Input / Output API
rev 1.0

10.4 ULONGPACKET DIAGRAM.

Control_Type
Payload Type

<<Interface>>
Packet
(from PacketBB)

+maxPayloadSize : unsigned short
»minPayloadSize : unsigned short

“pushPacket(priority : in octet, control : in ControlType, payload : in PayloadType) : void
*spaceAvailable(priorityQueuelD : in octet) : short

“enableFlowControlSignals(enable : in boolean) : void

“enableEmptySignal(enable : in boolean) : void
*setNumOfPriorityQueues(numOfPriorities : in octet) : void

<<uses>>

<<Interface>>
UlongPacket

#maxPayloadSize : unsigned short
»minPayloadSize : unsigned short

“pushPacket(priority : in octet, control : in AudioControlType, payload : in 10_API::PortTypes::UlongSequence) : void
%'spaceAvailable(priorityQueuelD : in octet) : short

“enableFlowControlSignals(enable : in boolean) : void

%enableEmptySignal(enable : in boolean) : void

¥'setNumOfPriorityQueues(numOfPriorities : in octet) : void

/ N <<uUses>>
/ \\
/ A
// ™ \,
[é’ <<uses>> S
<<CORBAStruct>>
<<CORBATypedef>> AudioControlType

UlongSequence
(from PortTypes)

»endOfStream : boolean
#streamID : unsigned short
»sequenceNum : octet

Figure 10-4. UML UlongPacket Relationships

72

JTRS Input / Output API

rev 1.0
10.5 COMPONENT DIAGRAM.
IOErrorSign O O LifeCycle
al
DatalOConfi PropertySet
guration O
O Resource
OctetPacket
‘ IOSignals
(@)
Provider .
[]
TestableObj
ect
UlongPacke
t
User AudiolOCont
rol
DatalOContr
ol ‘ ‘ ‘ Controller Audible_Alert
UshortPack AudiolOConi sAndAlarms
PacketSign l.“o . on
als et iguration

Figure 10-5. Component Diagram

73

